鉅大鋰電 | 點擊量:0次 | 2019年04月27日
對鋰離子電池的維護管理不當(dāng)將直接影響鋰離子電池的使用效益和壽命
對鋰離子電池的維護管理不當(dāng)將直接影響鋰離子電池的使用效益和壽命,甚至直接損壞鋰電池,從而影響水下機器人整體性能,嚴重情況下還會導(dǎo)致機器人的安全事故。通過在線測量鋰離子動力電池組的參數(shù),可以及時了解鋰離子電池的工作狀態(tài)、工作特性及鋰離子電池需要維護情況,因而鋰離子動力電池的在線監(jiān)測系統(tǒng)的研制勢在必行。
為了實現(xiàn)鋰離子動力電池參數(shù)的監(jiān)測,首選需要設(shè)計參數(shù)采集模塊,將鋰離子動力電池的電壓、電流、溫度等參數(shù)采集出來,同時上傳到帶有A/D轉(zhuǎn)換模塊的單片機中,對這些數(shù)據(jù)進行記錄和顯示。
2鋰離子動力電池組的監(jiān)測系統(tǒng)概述
本系統(tǒng)采用分散數(shù)據(jù)采集和集中數(shù)據(jù)處理,分別設(shè)計電壓采集電路、電流采集電路、溫度采集電路,然后把數(shù)據(jù)都輸送到單片機進行集中處理。本系統(tǒng)監(jiān)測的對象是國家863項目水下機器人系統(tǒng)的鋰離子動力電池組,用的是深圳雷天科技生產(chǎn)的TS-LFP160AHA型號的鋰離子動力電池,電池組由8塊單體電池組成。需要監(jiān)測每塊單體電池的端電壓,并做出過壓、欠壓判斷;需要多點測溫度,監(jiān)測每塊電池的溫度以及電池組所處環(huán)境的溫度、濕度;由于8塊單體電池串聯(lián),所以只需要測出串聯(lián)電流,并做出過流判斷。
本文采用了TMS320LF2407A芯片。采用此芯片作為電池監(jiān)測系統(tǒng)的CPU還體現(xiàn)在以下幾個方面:
1.節(jié)能,節(jié)能已經(jīng)成為現(xiàn)代電子設(shè)備設(shè)計的一個熱點問題。當(dāng)設(shè)備由二次電池來作為電源的時候,節(jié)能問題則變得更加突出和重要。本設(shè)計使用的DSP由3.3V電源供電,減小了控制器的損耗。芯片電源管理包括低功耗模式,能獨立將外設(shè)器件轉(zhuǎn)入低功耗模式。
2.16通道輸入的A/D轉(zhuǎn)換器。這一點對于多路采集子電路很有意義。可以直接將采集電路的輸出接到DSP的A/D轉(zhuǎn)換通道。而不必在DSP外面再設(shè)A/D轉(zhuǎn)換電路。
3.40個可單獨編程或復(fù)用的輸入輸出引腳。可用于安全開關(guān)及其它外設(shè)電路的控制。
4.串行通信接口(SCI)和16位串行外設(shè)接口模塊(SPI)可以接監(jiān)測系統(tǒng)的顯示部分。
3系統(tǒng)的硬件設(shè)計
系統(tǒng)的硬件設(shè)計主要包括電壓采集電路、電流采集電路和溫度采集電路設(shè)計。采集電路以TMS320LF2407A為CPU。TMS320LF2407A是TI公司專為實時控制而設(shè)計的高性能16位定點DSP器件,指令周期為33ns,其內(nèi)部集成了前端采樣A/D轉(zhuǎn)換器和后端PWM輸出硬件,在滿足系統(tǒng)實時性要求的同時可簡化硬件電路設(shè)計。
3.1電壓采集電路設(shè)計本設(shè)計以鋰離子動力電池為管理對象。電池組由8塊3.6V鋰電池組成。每個電池單體的額定電壓為3.6V充滿時端電壓為4.25V。要求電壓采集精度控制在1.5%以內(nèi)。電池管理系統(tǒng)要求的最低采樣頻率為20ms。
系統(tǒng)采用線性光耦作為隔離和數(shù)據(jù)采集系統(tǒng)的信號傳遞采樣器件,這樣就將前端的每一節(jié)電池的電壓隔離出來。將電池的大電壓按一定比例縮小,以便將電池變化的電壓值如實地反映給DSP。其后需經(jīng)過多路開關(guān)進入微處理器進行計算。光耦隔離的優(yōu)點是速度快(光耦的速度是微秒級,遠小于繼電器的毫秒級),實時性要好。另外光耦兩端的信號在電氣連接上完全隔離,不存在任何關(guān)系,所以即使在光耦的輸出端發(fā)生短路也不會給電池的使用造成任何影響。光耦將電壓信號轉(zhuǎn)換為電流信號進行采集,解決了共地問題。與電壓傳感器相比,光耦的性價比更高。
在選擇器件的時候,我們考慮到經(jīng)濟性和實用性,光電禍合器選擇了日本東芝公司生產(chǎn)的TLP521,運算放大器選擇的雙運算放大器TL082。
VIN即電池單體電壓,經(jīng)過R1與光耦中的發(fā)光二極管形成回路,將電壓信號(VIN)轉(zhuǎn)換為電流信號(I11)。I11與I21有一定比例關(guān)系I11∝I21。UU1在這里作為比較器使用。當(dāng)A點電壓Va大于B點電壓Vb,UU1就輸出高一些的電壓值,當(dāng)A點電壓Va低于B點電壓Vb,UU1就輸出低一些的電壓值。在整個電壓采樣電路中,比較器形成一個反饋。使A、B兩點的電壓值保持一致。這樣做的目的是B點電壓顯然是15∕2=7.5v,Va=Vb=7.5v,說明上下兩個光耦中的三極管導(dǎo)通情況一樣。這樣,三極管的導(dǎo)通情況是受控于發(fā)光二極管的。可知當(dāng)I21=I22時,I11=I22。這樣,VIN∕=I11=I22=Vout∕R4。可見Vout與VIN成比例。
3.2電流采集電路設(shè)計鋰離子動力電池組所有電池單體串連組成整個供電系統(tǒng),只設(shè)置一個電流采集點即可。
本文采用霍爾電流傳感器采集。
霍爾電流傳感器的原理圖如3-2。被測電流In流過導(dǎo)體產(chǎn)生的磁場,由通過霍爾元件輸出信號控制的補償電流Im流過次級線圈產(chǎn)生的磁場補償,當(dāng)原邊與副邊的磁場達到平衡時其補償電流Im即可精確反映原邊電流In值。
本系統(tǒng)選用的是宇森CBH100SF型號的閉環(huán)霍爾電流傳感器。測量頻率是0-100KHz,額定電流100A,測量范圍:0-±150A,匝數(shù)比1:1000,精度0.2%-1%,相應(yīng)時間:《lus。結(jié)構(gòu)如圖3-3所示:
其中采樣電阻Rm采用精密電阻取樣,推薦選用低溫漂(不大于2ppm)高精度的金屬膜電阻;因為寄生電感較大的原因,在高頻采樣場合,應(yīng)避免采用精密線繞電阻。取樣電阻×副邊輸出電流額定值應(yīng)小于電源電壓,差值大于4V。采樣電阻的功率必須足夠,Rm=30Ω。
3.3溫度采集電路設(shè)計在電池剩余電量的計算中,電池的工作溫度是一個重要的影響因素。除此之外,在判斷電池安全和熱處理方面也需要實時采集溫度參數(shù)。本設(shè)計中,既設(shè)計了8節(jié)單體電池的溫度信號采集,也設(shè)計了對于環(huán)境溫度的實時采集。
本系統(tǒng)是采用了熱敏電阻進行電池本身的溫度檢測。與電橋電路結(jié)合,將溫度信號反映為電壓信號。電路如圖3-4。
其中RMDZ1是熱敏電阻,使用它主要是考慮到性價比高,而且它的體積小連接線長,可直接貼在電池單體的外殼上。缺點就是線性度不好。電池溫度的檢測主要是對上下兩個界限溫度的報替,和計算電池間的溫差,找出異常電池。不牽扯函數(shù)與復(fù)雜計算的問題,對線型度要求不高,所以使用熱敏電阻可以滿足需求。
環(huán)境溫度的測量選用一種新穎的溫度傳感器LM35,其特點是輸出電壓與環(huán)境攝氏溫度成正比,集成電路內(nèi)部己經(jīng)校正,無需外部校正。靈敏度為10.0mV/℃,精度可達0.5℃,工作電壓范圍4V-30V,耗電極少,輸出阻抗低。自此使用LM35滿量程[55℃,150℃]連接方法。為了防止零下溫度時,輸出負壓,不便于采樣到DSP中,設(shè)計了一個減法器電路。調(diào)整為環(huán)境溫度在[-45℃,75℃]范圍內(nèi),輸出電壓是[0,4.5V]。
4系統(tǒng)的軟件設(shè)計本系統(tǒng)的軟件設(shè)計采用DSP(TMS320LF2407A)C語言編程,實行模塊化設(shè)計,增加了程序的可讀性和移植性。本設(shè)計主要以水下機器人使用的鋰離子動力電池為研究對象而設(shè)計,同時力求能夠有更好的兼容性,即換作其它電池不需要改動硬件,只需改動軟件,甚至盡可能小地改動軟件即可使用。對于本系統(tǒng)而言,控制軟件應(yīng)滿足如下要求:
采集電流、電壓、溫度等信號,判斷電池的故障信號,進行處理并采取相應(yīng)的保護措施,顯示故障信息。
模擬數(shù)據(jù)的采集包括電池單體電壓、電流、電池單體溫度、環(huán)境溫度。其中電壓采集是需要由控制模擬多路開關(guān)來完成,各個單體電池電壓值分時進入DSP,要求采集同一時刻的電壓與電流。充分利用TMS320F2407A/D模塊,一次采集四個量:電壓、電流、電池溫度、環(huán)境溫度,利用循環(huán)完成對電池組中多個電池的模擬量采樣。
5總結(jié)
本文針對鋰離子動力電池組的特性和測試要求,設(shè)計了基于TMS320LF2407A的監(jiān)測系統(tǒng),提出了分散數(shù)據(jù)采集與集中數(shù)據(jù)處理的方案,給出了電池監(jiān)測系統(tǒng)電壓、電流、溫度采集的軟硬件方案,搭建了單體電池數(shù)目可達8節(jié)的電池監(jiān)測系統(tǒng)底層采集模塊框架。
在此基礎(chǔ)上可以方便地將電池信息采集到DSP中進行記錄和電池狀態(tài)的估測判斷,并通過CAN網(wǎng)絡(luò)與中心控制器通信,形成完整的電池監(jiān)控系統(tǒng)。
本課題的主要研究內(nèi)容在于電池監(jiān)測系統(tǒng)整體方案的設(shè)計和硬件電路的設(shè)計。其核心是分散數(shù)據(jù)采集與集中數(shù)據(jù)處理相結(jié)合的方案。分別采集單體電池的電壓、電路、溫度,將這些基本信息送到DSP中進行集中的、綜合的分析、處理。硬件設(shè)計的重點是幾個采集電路的設(shè)計以及DSP小系統(tǒng)在監(jiān)測系統(tǒng)中的應(yīng)用。電壓采集電路在保證性能的基礎(chǔ)上,具有靈活性和明顯的價格優(yōu)勢。通道間的干擾和采集速度都得到改善。可滿足系統(tǒng)的實時性和測量精度的要求。通過增加外設(shè)采樣保持,可以采集到同一時刻的電壓和電流。電池管理系統(tǒng)的電流、溫度采集,分別采用了霍爾大電流傳感器、熱敏電阻、霍爾溫度進行測量。
每五次汽車故障就有一次是電池造成的。在未來數(shù)年內(nèi),隨著電傳線控,發(fā)動/熄火引擎管理和混合動力(電力/燃氣)等汽車技術(shù)日益普及,這一問題將變得越來越嚴重。
為了減少故障,需要精確地檢測電池的電壓、電流和溫度,對結(jié)果進行預(yù)處理,計算充電狀態(tài)和運行狀態(tài),將結(jié)果發(fā)送到發(fā)動機控制單元(ECU),以及控制充電功能。
現(xiàn)代汽車誕生于20世紀(jì)初。第一輛汽車依靠手動啟動,需要很大的力量,存在很高的風(fēng)險,汽車的這種“手搖曲柄”造成了很多死亡事故。1902年,第一臺電池啟動馬達研制成功,到1920年,所有的汽車都已采用電啟動。
最初使用的是干電池,當(dāng)電能耗盡時,必須予以更換。不久之后,液體電池(即古老的鉛酸電池)就取代了干電池。鉛酸電池的優(yōu)點是當(dāng)發(fā)動機工作時,它可以從中充電。
在上世紀(jì),鉛酸電池幾乎沒有什么變化,最后一次主要改進是對其進行密封。真正改變的是對它的需求。起初,電池僅僅用于發(fā)動汽車、鳴喇叭和為車燈供電。如今,在點火之前,汽車的所有電氣系統(tǒng)都要靠它供電。
激增的新型電子設(shè)備不僅僅是GPS和DVD播放器等消費電子設(shè)備。如今,發(fā)動機控制單元(ECU)、電動車窗和電動座椅之類的車身電子設(shè)備已成為許多基本車型的標(biāo)準(zhǔn)配置。呈指數(shù)級增加的負載已經(jīng)產(chǎn)生嚴重影響,電氣系統(tǒng)造成的故障日益增多就是明證。根據(jù)ADAC和RAC統(tǒng)計,在所有汽車故障中,幾乎有36%可歸因于電氣故障。如果對該數(shù)字進行分析,可以發(fā)現(xiàn)50%以上的故障是由鉛酸電池這一組件造成的。
評定電池的健康狀況以下兩個關(guān)鍵特性可以反映鉛酸電池的健康狀況:
(1)充電狀態(tài)(SoC):SoC指示電池可以提供多少電荷,用電池額定容量(即新電池的SoC)的百分比表示。
(2)運行狀態(tài)(SoH):SoH指示電池可以儲存多少電荷。充電狀態(tài)充電狀態(tài)指示好比是電池的“燃油表”。計算SoC的方法有很多,其中最常用的有兩個:開路電壓測量法和庫侖測定法(也稱庫侖計數(shù)法)。
(1)開路電壓(VOC)測量法:電池空載時的開路電壓與其充電狀態(tài)之間成線性關(guān)系。這種計算方法有兩個基本限制:一是為了計算SoC,電池必須開路,不連接負載;二是這種測量僅在經(jīng)過相當(dāng)長的穩(wěn)定期后才精確。這些局限使得VOC方法不適合在線計算SoC。該方法通常在汽車維修店中使用,在那里電池被卸下,可以用電壓表測量電池正負極之間的電壓。
(2)庫侖測定法:這種方法用庫侖計數(shù)求取電流對時間的積分,從而確定SoC。利用該方法可以實時計算SoC,即使電池處在負載條件下。然而,庫侖測定法的誤差會隨著時間推移而增大。
一般是綜合運用開路電壓和庫侖計數(shù)法來計算電池的充電狀態(tài)。
運行狀態(tài)運行狀態(tài)反映的是電池的一般狀態(tài),以及其與新電池相比儲存電荷的能力。由于電池本身的性質(zhì),SoH計算非常復(fù)雜,依賴于對電池化學(xué)成分和環(huán)境的了解。電池的SoH受很多因素的影響,包括充電接受能力、內(nèi)部阻抗、電壓、自放電和溫度。
一般認為難以在汽車這樣的環(huán)境中實時測量這些因素。在啟動階段(引擎起動),電池處在最大負載下,此時最能反映電池的SoH。
Bosch、Hella等領(lǐng)先汽車電池傳感器開發(fā)商實際使用的SoC和SoH計算方法屬于高度機密,常常還受專利保護。作為知識產(chǎn)權(quán)的擁有者,他們通常與Varta和Moll等電池制造商密切合作開發(fā)這些算法。
(1)電池檢測電池電壓通過一個直接從電池正極分接出來的阻性衰減器來檢測。為檢測電流,將一個檢測電阻(12V應(yīng)用一般使用100mΩ)放在電池負極與地之間。在這種配置中,汽車的金屬底盤一般為地,檢測電阻安裝在電池的電流回路中。在其它配置中,電池的負極是地。對于SoH計算,還必須檢測電池的溫度。
(2)微控制器微控制器或MCU主要完成兩個任務(wù)。第一個任務(wù)是處理模數(shù)轉(zhuǎn)換器(ADC)的結(jié)果。這項工作可能很簡單,例如僅執(zhí)行基本濾波;也可能很復(fù)雜,例如計算SoC和SoH。實際的功能取決于MCU的處理能力和汽車制造商的需求。第二個任務(wù)是將處理過的數(shù)據(jù)經(jīng)由通信接口發(fā)送到ECU。
(3)通信接口目前,本地互連網(wǎng)絡(luò)(LIN)接口是電池傳感器和ECU之間最常用的通信接口。LIN是廣為人知的CAN協(xié)議的單線、低成本替代方案。
這是電池檢測最簡單的配置。然而,大多數(shù)精密電池檢測算法要求對電池電壓與電流,或者電池電壓、電流與溫度同時采樣。
為了進行同步采樣,最多需要增加兩個模數(shù)轉(zhuǎn)換器。此外,ADC和MCU需要調(diào)節(jié)電源以便正確工作,導(dǎo)致電路復(fù)雜性增加。這已經(jīng)由LIN收發(fā)器制造商通過集成調(diào)節(jié)電源而得到解決。汽車精密電池檢測的下一步發(fā)展是集成ADC、MCU和LIN收發(fā)器,例如ADI公司的ADuC703x系列精密模擬微控制器。
ADuC703x提供兩個或三個8ksps、16位Σ-ΔADC,一個20.48MHzARM7TDMIMCU,以及一個集成LINv2.0兼容收發(fā)器。ADuC703x系列片內(nèi)集成低壓差調(diào)節(jié)器,可以直接從鉛酸電池供電。為了滿足汽車電池檢測的需求,前端包括如下器件:一個電壓衰減器,用于監(jiān)控電池電壓;一個可編程增益放大器,與100mΩ電阻一起使用時,支持測量1A以下到1500A的滿量程電流;一個累加器,支持庫侖計數(shù)而無需軟件監(jiān)控;以及一個片內(nèi)溫度傳感器。
采用集成器件的解決方案示例幾年前,只有高檔汽車才配有電池傳感器。如今,安裝小型電子裝置的中低檔汽車越來越多,而十年前只能在高端車型中見到。鉛酸電池所引起的故障數(shù)量因此不斷增加。過不了幾年,每輛汽車都會安裝電池傳感器,從而降低日益增多的電子裝置引發(fā)故障的風(fēng)險。










