電池百科
宣傳內容
宣傳內容
近年來研究表明,納米電極材料有望提供相當于現在商用鋰離子電池數倍的能量或功率密度,但該材料此前只能在負載量極低的超薄研究型電極中達到其優異性能,難以在需要較高負載量的商用器件中實現其應有潛力。美國加州大學洛杉磯分校段鑲鋒教授團隊最近研制出一種三維多孔石墨烯復合電極材料,成功地解決了電極性能隨著負載量急劇下降的關鍵難題,使得制備高負載的高性能電極成為可能。相關研究成果美國時間11日發表在《科學》雜志上。
石墨烯被譽為21世紀的“黑金材料”,在全球引起廣泛關注,涌現了超級石墨烯玻璃、超級石墨烯光纖、標號性石墨烯薄膜、石墨烯納米墻、電致變色窗、觸摸屏、智能投影墻、石墨烯超級電容器、石墨烯無紡布、粉體石墨烯、核石墨等一系列令人眼花繚亂的應用研究。
近年來,高性能電化學儲能裝置的需求量大幅上升,于是很多學者都開始投入到對更卓越電極材料的開發和研究中。在這方面,石墨烯基材料吸引了大量目光。由于能提升現有設備性能,并使下一代設備更實用,石墨烯基材料被看作是前景深遠的高性能電極材料。
隨著科學技術的發展,尤其是近年來石墨烯技術的提升,石墨烯添加劑技術已經進入到潤滑油領域。從技術角度來講,石墨烯的潤滑原理和之前的抗磨添加劑的作用方式并不完全一樣——由于石墨烯的分子顆粒非常小,因此它能在缸壁與活塞之間進行摩擦時產生滾珠效應,把滑動摩擦變為滾動摩擦,同時還能像膩子一樣把缸壁上不平整的地方抹平。
我們知道,近期三星的爆炸事件、蘋果手機的自動關機事件,就是電池與手機的兼容性問題。這其實就是由于手機的電池續航能力、以及支持能力存在的巨大安全隱患。因為“智能手機”中有大量芯片,比如音頻芯片、視頻芯片、電源管理芯片、ISP芯片(拍照用)、WIFI芯片、CPU、GPU、基帶等等,人們對智能手機的性能的要求越來越高,尤其是續航能力,所以這些芯片的負荷也就越來越高。
近幾年來,石墨烯這種獲過諾獎的材料一直廣受社會關注,在相關媒體上也充滿了各種“石墨烯電池”等方面的新聞。廣大群眾此時可能會好奇:石墨烯這種材料到底有多少用處,能不能依靠它來解決目前材料、電池等方面遇到的一系列技術瓶頸,幫助電動汽車、儲能等行業實現飛躍?
石墨烯是目前在科技界最為流行的一種高性能材料,單層原子的厚度和各種優良性能,使它在各行各業都具有極高的應用潛力。從導電材料到電磁再到纖維,跨越26個領域的石墨烯,可以說是目前世界上最薄也是最堅硬的材料,從神奇的石墨烯紙片到快速充電電池再到石墨烯導電塑料、石墨烯屏蔽線、石墨烯地熱片、石墨烯柔性手機、石墨烯碳纖維、石墨烯導熱膜,更有可能替代硅,制造未來新一代超級計算機。但是我們相信石墨烯的潛力遠不止這些。
石墨烯(Graphene)是一種由碳原子以sp2雜化方式形成的蜂窩狀平面薄膜,是一種只有一個原子層厚度的準二維材料,所以又叫做單原子層石墨。它的厚度大約為0.335nm,根據制備方式的不同而存在不同的起伏,通常在垂直方向的高度大約1nm左右,水平方向寬度大約10nm到25nm,是除金剛石以外所有碳晶體(零維富勒烯,一維碳納米管,三維體向石墨)的基本結構單元。
石墨烯(Graphene)是一種由碳原子以sp2雜化方式形成的蜂窩狀平面薄膜,是一種只有一個原子層厚度的準二維材料,所以又叫做單原子層石墨。英國曼徹斯特大學物理學家安德烈·蓋姆和康斯坦丁·諾沃肖洛夫,用微機械剝離法成功從石墨中分離出石墨烯,因此共同獲得2010年諾貝爾物理學獎。石墨烯常見的粉體生產的方法為機械剝離法、氧化還原法、SiC外延生長法,薄膜生產方法為化學氣相沉積法(CVD)。由于其十分良好的強度、柔韌、導電、導熱、光學特性,在物理學、材料學、電子信息、計算機、航空航天等領域都得到了長足的發展。
綠色”的能量儲運體系已成為當前能源領域的關注熱點,鋰電作為其中重要的一個分支,其性能的提升是科研工作者關注的重點。隨著研究的不斷發展,高性能鋰電電極材料層出不窮。實際應用中,所制備材料性能無法完全發揮是制約其實現高能量密度、高功率密度的關鍵。石墨烯的高導電性、高導熱性、高比表面積、等諸多優良特性,一定程度上對解決該問題有著非常重要的理論和工程價值。石墨烯在用作鋰離子電池正負極材料方面具有以下優勢:
2017年,英國和中國的科學家先后利用不同方法,實現了對氧化石墨烯層間距的精確控制,使得體積較小的水分子可以順利通過,而鹽離子則被“堵在門外”。該成果展現了氧化石墨烯在海水淡化領域的巨大潛力。
新材料是國家七大戰略性新興產業之一,也是我國石化和化學工業加快轉變發展方式的重要著力點,并且與能源、信息、裝備制造、節能環保、生物醫學等產業密切相關。目前,新材料已被列入國家、各級地方政府以及生產企業的規劃重點,投資者重點研究的熱點領域。材料的“新”與“舊”其實是相對的,既取決于產品本身的技術含量、使用性能、工藝水平,也與該國的社會發展階段、區域市場的稀缺程度有關。
利用超聲和攪拌等方法將石墨烯粉末均勻分散于有機溶劑中,得到濃度為0.05mg/ml~0.5mg/ml的石墨烯溶液,通過抽濾的方法將石墨烯均勻覆蓋于有機濾膜或水系濾膜之上,再通過機械剝離、浸泡或有機溶劑溶解的方法將石墨烯薄膜和濾膜分離,得到石墨烯薄膜,在石墨烯薄膜上加上電極,對其施加電壓即可產生熱量。由于石墨烯獨特的二維納米結構,大的厚徑比、高的比表面積的特性,通過以上的制備工藝,使得石墨烯片層之間形成均勻連通的導電網絡,在施加較低的電壓(1~10V)下即可產生較高的熱量。
2004年,兩位俄裔英籍科學家將石墨烯成功從石墨中分離。石墨烯集合世界上最優質的各種材料品質于一身。石墨烯無疑是過去十年,乃至未來幾十年,所有材料“明星”中最耀眼的一顆。如果說20世紀是硅的世紀,神奇的石墨烯則是21世紀新材料的寵兒。